
Ch. 1, Physics & Measurement

Guess what? I signed up for a psychics class at school. I'll be predicting stuff in no time!

Outline

Ch. 1, Physics & Measurement

- 1. Physics is an experimental science ⇒ Measurements⇒ Units
- 2. Physics is a quantitative science ⇒ Mathematics ⇒ Algebra & Calculus
- 3. International System (SI) of units: Length ⇒ m,
 Time ⇒ s, Mass ⇒ kg
 Objects have different sizes ⇒ Conversion of units
- 4. Other properties of matter require the use of derived units: $\rho = m/V \implies \text{density unit: kg/m}^3$

If you know the formula \Rightarrow You can find the units If you know the units \Rightarrow You can "guess" the formula!

Physics:

The most basic of all sciences!

• Physics: The "Mother" of all sciences!

• **Physics** = The study of the behavior of and the structure of matter and energy and of the interaction between matter and energy.

Physics: General Discussion

- Goal of Physics (& all of science): To quantitatively and qualitatively describe the "world around us".
- Physics <u>IS NOT</u> merely a collection of facts and formulas!
- Physics <u>IS</u> a <u>creative</u> activity!
- Physics \rightarrow Observation \rightarrow Explanation.
- Requires **IMAGINATION**!!

Physics & its relation to other fields

- The "Mother" of all Sciences!
- The foundation for and is connected to *ALL* branches of *science and engineering*.
- Also useful in everyday life and in *MANY* professions
 - Chemistry
 - Life Sciences
 - Architecture
 - Engineering.

—

Theory

- Quantitative description of experimental observations.
- Not just <u>WHAT</u> is observed but <u>WHY</u> it is observed as it is and <u>HOW</u> it works the way it does.

• Tests of theories:

- Experimental observation:

More experiments, more observation.

- <u>Predictions</u>:

Made before observations & experiments.

Model, Theory, Law

- Model: An analogy of a physical phenomenon to something we are familiar with.
- Theory: More detailed than a model. Puts the model into mathematical language.
- Law: Concise & general statement about how nature behaves. Must be verified by many, many experiments! Only a few laws.
 - Not comparable to laws of government!

Measurement & Uncertainty

- Physics is an **EXPERIMENTAL** science!
 - Finds relations between physical quantities.
 - Expresses those relations in the language of mathematics. (LAWS & THEORIES)
- Experiments are <u>NEVER</u> 100% accurate.
 - Always have uncertainty in final result.
 - Experimental error.
 - Common to state this precision (when known).

• Consider a simple measurement of the width of a board. Find **23.2** cm.

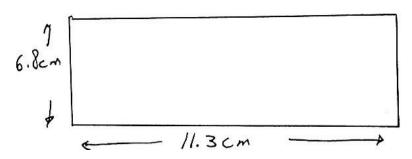
• However, measurement is only accurate to 0.1 cm (estimated).

- \Rightarrow Write width as (23.2 ± 0.1) cm
 - $\pm 0.1 \text{ cm} \equiv Experimental uncertainty}$
- Percent Uncertainty:

$$\pm (0.1/23.2) \times 100 \approx \pm 0.4\%$$

Significant Figures

• Significant figures ("sig figs")


The number of reliably known digits in a number.

- Calculation involving several numbers.
 - Number of sig figs in result

 Number of sig figs of the number containing the smallest number of sig figs which entered the calculation.

• Example:

(Not to scale!)

- Area of board, dimensions $11.3 \text{ cm} \times 6.8 \text{ cm}$
- $Area = (11.3) \times (6.8) = 76.84 \text{ cm}^2$
- 11.3 has 3 sig figs, 6.8 has 2 sig figs
- \Rightarrow 76.84 has too many sig figs!
- Proper number of sig figs in answer = 2
- ⇒ Round off 76.84 & keep only 2 sig figs
- \Rightarrow Reliable answer for area = 77 cm²

Sig Figs

• General Rule: Final result of multiplication or division should have only as many sig figs as the number with least sig figs in the calculation.

• **NOTE!!!!** All digits on your calculator are *NOT* significant!!

Powers of 10

(Scientific Notation)

- READ Appendix B.1
- Common to express very large or very small numbers using powers of 10 notation.
- Examples:

$$39,600 = 3.96 \times 10^4$$

(moved decimal 4 places to left)

$$0.0021 = 2.1 \times 10^{-3}$$

(moved decimal 3 places to right)

Units, Standards, SI System

- All measured physical quantities have units.
- Units are *VITAL* in physics!!
- In this course (and in most of the **modern** world, *except the USA!*) we will use (almost) exclusively the **SI system of units**.

SI = "Systéme International" (French)

More commonly called the "MKS system" (meter-kilogram-second) or more simply, "the metric system"

SI or MKS System

- Defined in terms of **standards** for length, mass (we'll discuss later), and time.
- Length unit: Meter (m) (kilometer = km = 1000 m)
 - Standard meter. Newest definition in terms of speed of light ≡ Length of path traveled by light in vacuum in (1/299,792,458) of a second!
- Time unit: Second (s)
 - Standard second. Newest definition ≡ time required for 9,192,631,770 oscillations of radiation emitted by cesium atoms!
- Mass unit: Kilogram (kg)
 - Discussed in detail later

Larger & smaller units defined from SI standards by powers of 10 & Greek prefixes

TABLE 1-4
Metric (SI) Prefixes

Prefix	Abbreviation	Value
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^1
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
$micro^{\dagger}$	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

 $^{^{\}dagger}\mu$ is the Greek letter "mu."

Typical Lengths (approx.)

TABLE 1-1
Some typical Lengths or Distances (order of magnitude)

Length (or distance)	Meters (approximate)
Neutron or proton (radius)	$10^{-15}\mathrm{m}$
Atom	$10^{-10}\mathrm{m}$
Virus [see Fig. 1–6]	10^{-7} m
Sheet of paper (thickness)	10^{-4} m
Finger width	10^{-2} m
Football field length	10^2 m
Mt. Everest height [see Fig. 1-6]	10^4 m
Earth diameter	10^7 m
Earth to Sun	10^{11} m
Nearest star, distance	10^{16} m
Nearest galaxy	10^{22} m
Farthest galaxy visible	10^{26} m

Typical Times & Masses (approx.)

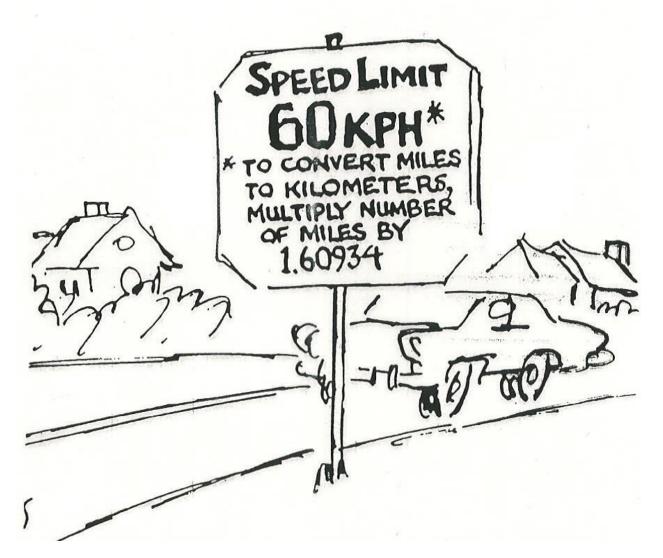

TABLE 1-2 Some typical Time Intervals			
Time interval	Seconds (approximate)		
Lifetime of very unstable particle	10^{-23} s		
Lifetime of radioactive elements	10^{-22} s to 10^{28} s		
Lifetime of muon	10^{-6} s		
Time between human heartbeats	$10^0 \text{ s } (=1 \text{ s})$		
One day	10^5 s		
One year	3×10^7 s		
Human life span	2×10^9 s		
Length of recorded history	10 ¹¹ s		
Humans on Earth	$10^{14} s$		
Life on Earth	10^{17} s		
Age of Universe	10 ¹⁸ s		

TABLE 1-3 Some Masses				
Object	Kilograms (approx.)			
Electron	$10^{-30} { m kg}$			
Proton, neutron	$10^{-27} { m kg}$			
DNA molecule	10^{-17}kg			
Bacterium	$10^{-15} { m kg}$			
Mosquito	10^{-5} kg			
Plum	10^{-1} kg			
Person	10^2 kg			
Ship	10 ⁸ kg			
Earth	6×10^{24} kg			
Sun	2×10^{30} kg			
Galaxy	10 ⁴¹ kg			

Other Systems of Units

- CGS (centimeter-gram-second) system
 - **Centimeter** = 0.01 meter
 - **Gram** = 0.001 kilogram
- British (foot-pound-second) system
 - Our "everyday life" system of units
 - Only used by USA and some third world countries.
 Rest of world (including Britain!) uses SI system.
 We *will not* use the British System in this course!
 - Conversions exist between the British & SI systems. We will not use them in this course!

In this class, we will NOT do unit conversions!

We will work <u>exclusively</u> in SI (MKS) units!

Basic & Derived Quantities

• Basic Quantity ≡ Must be defined in terms of a standard (meter, kilogram, second).

• **Derived Quantity** ≡ Defined in terms of combinations of basic quantities

– Unit of speed = meter/second = m/s

Units and Equations

- In dealing with equations, remember that the units must be the same on both sides of an equation (otherwise, it is not an equation)!
- Example: You go 90 km/hr for 40 minutes. How far did you go?
 - Equation from Ch. 2: $\mathbf{x} = \mathbf{vt}$, $\mathbf{v} = \mathbf{90}$ km/hr, $\mathbf{t} = \mathbf{40}$ min. To use this equation, first convert \mathbf{t} to hours:

$$t = (\frac{2}{3})hr$$
 so, $x = (90 \text{ km/hr}) \times [(\frac{2}{3})hr] = 60 \text{ km}$

The hour unit (hr) has (literally) cancelled out in the numerator & denominator!

Changing Units

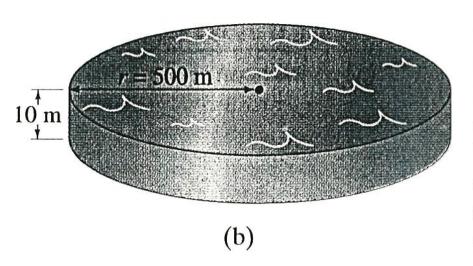
- As in the example, units in the numerator & the denominator can cancel out (as in algebra)
- Illustration: Convert 80 km/hr to m/s Conversions: 1 km = 1000 m; 1hr = 3600 s
- \Rightarrow 80 km/hr =

(80 km/hr) (1000 m/km) (1hr/3600 s)

(Cancel units!)

80 km/hr \approx 22 m/s (22.222...m/s)

• Useful conversions:


1 m/s \cong 3.6 km/hr; 1 km/hr \cong (1/3.6) m/s

Order of Magnitude; Rapid Estimating

• Sometimes, we are interested in only an approximate value for a quantity. We are interested in obtaining rough or order of magnitude estimates.

- Order of magnitude estimates: Made by rounding off all numbers in a calculation to 1 sig fig, along with power of 10.
 - Can be accurate to within a factor of 10 (often better)

Example: $V = \pi r^2 d$

(a) How much water is in this lake? (Photo is of one of the Rae Lakes in the Sierra Nevada of California.) (b) Model of the lake as a cylinder. We could go one step further and estimate the mass or weight of this lake. We will see later that water has a density of 1000 kg/m³, so this lake has a mass of about $(10^3 \text{ kg/m}^3)(10^7 \text{ m}^3) \approx 10^{10} \text{ kg}$, which is about 10 billion kg or 10 million metric tons. (A metric ton is 1000 kg, about 2200 lbs, slightly larger than a British ton, 2000 lbs.)]

Example: Estimate!